189 research outputs found

    PaPILO: A Parallel Presolving Library for Integer and Linear Programming with Multiprecision Support

    Full text link
    Presolving has become an essential component of modern MIP solvers both in terms of computational performance and numerical robustness. In this paper, we present PaPILO, a new C++ header-only library that provides a large set of presolving routines for MIP and LP problems from the literature. The creation of PaPILO was motivated by the current lack of (a) solver-independent implementations that (b) exploit parallel hardware, and (c) support multiprecision arithmetic. Traditionally, presolving is designed to be fast. Whenever necessary, its low computational overhead is usually achieved by strict working limits. PaPILO's parallelization framework aims at reducing the computational overhead also when presolving is executed more aggressively or is applied to large-scale problems. To rule out conflicts between parallel presolve reductions, PaPILO uses a transaction-based design. This helps to avoid both the memory-intensive allocation of multiple copies of the problem and special synchronization between presolvers. Additionally, the use of Intel's TBB library aids PaPILO to efficiently exploit recursive parallelism within expensive presolving routines such as probing, dominated columns, or constraint sparsification. We provide an overview of PaPILO's capabilities and insights into important design choices

    Scylla: a matrix-free fix-propagate-and-project heuristic for mixed-integer optimization

    Full text link
    We introduce Scylla, a primal heuristic for mixed-integer optimization problems. It exploits approximate solves of the Linear Programming relaxations through the matrix-free Primal-Dual Hybrid Gradient algorithm with specialized termination criteria, and derives integer-feasible solutions via fix-and-propagate procedures and feasibility-pump-like updates to the objective function. Computational experiments show that the method is particularly suited to instances with hard linear relaxations

    Solve-RD: systematic pan-European data sharing and collaborative analysis to solve rare diseases.

    Get PDF
    For the first time in Europe hundreds of rare disease (RD) experts team up to actively share and jointly analyse existing patient\u27s data. Solve-RD is a Horizon 2020-supported EU flagship project bringing together \u3e300 clinicians, scientists, and patient representatives of 51 sites from 15 countries. Solve-RD is built upon a core group of four European Reference Networks (ERNs; ERN-ITHACA, ERN-RND, ERN-Euro NMD, ERN-GENTURIS) which annually see more than 270,000 RD patients with respective pathologies. The main ambition is to solve unsolved rare diseases for which a molecular cause is not yet known. This is achieved through an innovative clinical research environment that introduces novel ways to organise expertise and data. Two major approaches are being pursued (i) massive data re-analysis of \u3e19,000 unsolved rare disease patients and (ii) novel combined -omics approaches. The minimum requirement to be eligible for the analysis activities is an inconclusive exome that can be shared with controlled access. The first preliminary data re-analysis has already diagnosed 255 cases form 8393 exomes/genome datasets. This unprecedented degree of collaboration focused on sharing of data and expertise shall identify many new disease genes and enable diagnosis of many so far undiagnosed patients from all over Europe

    Zika virus infection in pregnancy: a protocol for the joint analysis of the prospective cohort studies of the ZIKAlliance, ZikaPLAN and ZIKAction consortia

    Get PDF
    Introduction: Zika virus (ZIKV) infection in pregnancy has been associated with microcephaly and severe neurological damage to the fetus. Our aim is to document the risks of adverse pregnancy and birth outcomes and the prevalence of laboratory markers of congenital infection in deliveries to women experiencing ZIKV infection during pregnancy, using data from European Commission-funded prospective cohort studies in 20 centres in 11 countries across Latin America and the Caribbean. / Methods and analysis: We will carry out a centre-by-centre analysis of the risks of adverse pregnancy and birth outcomes, comparing women with confirmed and suspected ZIKV infection in pregnancy to those with no evidence of infection in pregnancy. We will document the proportion of deliveries in which laboratory markers of congenital infection were present. Finally, we will investigate the associations of trimester of maternal infection in pregnancy, presence or absence of maternal symptoms of acute ZIKV infection and previous flavivirus infections with adverse outcomes and with markers of congenital infection. Centre-specific estimates will be pooled using a two-stage approach. / Ethics and dissemination: Ethical approval was obtained at each centre. Findings will be presented at international conferences and published in peer-reviewed open access journals and discussed with local public health officials and representatives of the national Ministries of Health, Pan American Health Organization and WHO involved with ZIKV prevention and control activities

    Study protocol for the multicentre cohorts of Zika virus infection in pregnant women, infants, and acute clinical cases in Latin America and the Caribbean: the ZIKAlliance consortium.

    Get PDF
    BACKGROUND: The European Commission (EC) Horizon 2020 (H2020)-funded ZIKAlliance Consortium designed a multicentre study including pregnant women (PW), children (CH) and natural history (NH) cohorts. Clinical sites were selected over a wide geographic range within Latin America and the Caribbean, taking into account the dynamic course of the ZIKV epidemic. METHODS: Recruitment to the PW cohort will take place in antenatal care clinics. PW will be enrolled regardless of symptoms and followed over the course of pregnancy, approximately every 4 weeks. PW will be revisited at delivery (or after miscarriage/abortion) to assess birth outcomes, including microcephaly and other congenital abnormalities according to the evolving definition of congenital Zika syndrome (CZS). After birth, children will be followed for 2 years in the CH cohort. Follow-up visits are scheduled at ages 1-3, 4-6, 12, and 24 months to assess neurocognitive and developmental milestones. In addition, a NH cohort for the characterization of symptomatic rash/fever illness was designed, including follow-up to capture persisting health problems. Blood, urine, and other biological materials will be collected, and tested for ZIKV and other relevant arboviral diseases (dengue, chikungunya, yellow fever) using RT-PCR or serological methods. A virtual, decentralized biobank will be created. Reciprocal clinical monitoring has been established between partner sites. Substudies of ZIKV seroprevalence, transmission clustering, disabilities and health economics, viral kinetics, the potential role of antibody enhancement, and co-infections will be linked to the cohort studies. DISCUSSION: Results of these large cohort studies will provide better risk estimates for birth defects and other developmental abnormalities associated with ZIKV infection including possible co-factors for the variability of risk estimates between other countries and regions. Additional outcomes include incidence and transmission estimates of ZIKV during and after pregnancy, characterization of short and long-term clinical course following infection and viral kinetics of ZIKV. STUDY REGISTRATIONS: clinicaltrials.gov NCT03188731 (PW cohort), June 15, 2017; clinicaltrials.gov NCT03393286 (CH cohort), January 8, 2018; clinicaltrials.gov NCT03204409 (NH cohort), July 2, 2017
    corecore